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Development Standards & Practices Used 

● Agile Scrum model used 

● IEEE UART protocols  

● Python PEP 8 Style  

● Arduino Style Guidelines 

● IEEE Code of Ethics 

Summary of Requirements 

● Program collects EM data and converts it to a usable format 
● Model will predict opcodes with 90%+ accuracy and operands with 80%+ 

accuracy. 
● Written in Python 
● Well-documented code 
● Predictions are formatted in a user-friendly format 
● Large amount of data used to train the model 

Applicable Courses from Iowa State University Curriculum  

● COM S 311 (Introduction to the Design and Analysis of Algorithms) 

● COM S 474 (Introduction to Machine Learning) 

● CPRE 288 (Embedded System I) 

● CPRE 381 (Computer Organization and Assembly Level Programming) 

● CPRE 482x (HW Design for Machine Learning) 

● EE 224 (Signals and Systems I) 

● EE 321 (Communication Systems I) 

● EE 201 (Electrical Circuits) 

● EE 230 (Electronic Circuits and Systems) 

New Skills/Knowledge acquired that was not taught in courses 

● Convolutional neural networks (CNNs), Markov chains 

● Side-channel observation of processors   

Executive Summary 
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1 Introduction 

1.1 ACKNOWLEDGEMENT 

We would like to thank Vhargese Vaidyan for sharing his knowledge about working with the EM 
side channel for reverse engineering, and for sharing his equipment and experience with us in order 
to jump start the project. Additionally, we’d like to thank ETG for letting us check out an 
oscilloscope for the entire Fall semester allowing us to begin long-term data capture. 

 

1.2 PROBLEM AND PROJECT STATEMENT 

General problem statement: 

 We want to be able to determine the assembly level code that is currently running on a 

processor by only reading the electromagnetic radiation that comes off of the processor. This kind 

of research has cyber security implications in that you could bypass a lot of security if you could 

find out what code is running just by measuring the physical electromagnetic (EM) radiation that 

the processor gives off. 

General solution statement: 

 Our solution is to capture data using an electromagnetic probe and send that data to a 

machine learning algorithm. The machine learning algorithm will be able to look at the data and 

the surrounding data points to determine with a degree of certainty what opcode and operand is 

being ex 

1.3 OPERATIONAL ENVIRONMENT 

The resulting end product from this project will be used in a laboratory environment with minimal 
electromagnetic interference. At the moment, the operational environment will be in 301 Durham. 
301 Durham has an oscilloscope and EM antenna powerful enough to capture the radiation emitted 
by our microcontroller.  

 

1.4 REQUIREMENTS 

Requirements: 

- Program collects EM data and converts it to a usable format 

- Model will predict opcodes with 90%+ accuracy and operands with 80%+ accuracy. 

Non-functional requirements: 

- Written in Python 

- Well-documented code 

- Predictions are formatted in a user-friendly format 

- Large amount of data used to train the model 
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1.5 INTENDED USERS AND USES 

Our single intended use is to measure EM radiation from a Cortex Arm M4 processor and output 
the corresponding opcodes and operands.  The intended user for our project is our client Akhilesh 
Tyagi and other EM side-channel researchers. 

 

1.6 ASSUMPTIONS AND LIMITATIONS 

Assumptions: 

- End users will have access to the necessary hardware and software 

- Design is running on a Cortex Arm M4 processor with a 4 stage pipeline running at 200 

MHz 

- EM is measured using same tools used to train the machine learning model 

Limitations: 

- Program will need to run on a high-end GPU 

- Input data to model must be in a specific format 

- Processor must have at least a 4 stage pipeline 

 

1.7 EXPECTED END PRODUCT AND DELIVERABLES 
1. A machine learning algorithm capable of 90% opcode, and 80% operand detection: 

The machine learning algorithm will be delivered at the end of the project, approximately 

May 2021. The algorithm will be created using python and will include the datasets used to 

test, train, and validate the algorithm. Additionally, the algorithm will include 

documentation describing how to redeploy the algorithm to a separate system. 

2. Automated data extraction tool to pull data from EMR probe. 

The extraction tool will take data from either the oscilloscope or digitizer and convert it 

into a format usable by the machine learning algorithm. This tool will allow the client to 

easily extract additional data to run against the trained algorithm. We expect to have this 

data extraction tool to be completed by November 2020, but will be delivered to the client 

with the machine learning algorithm in May 2021.
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2 Project Plan 

2.1 TASK DECOMPOSITION 

Hardware: 

We will need to set up some interface to probe the EM radiation from the processor which will 

need to be precise and consistent in order to get as clean data as possible. Also we should set up 

some way to control, monitor and save the processor’s executing instructions. 

Task:  

● Data collection interface: Modify existing arduino code and matlab file to be compatible 

with Nucleo board ISA, for automating data collection 

● Mount: Design a structure for the probe and processing board to be mounted on for 

consistent measuring. 

● Single OPs data: Collect many instances of single opcodes being executed on our 

processor. 

○ Varying Operands Single OPs:  data with varying operands 

● Multiple Ops data: Collect many instances of multiple opcodes being executed on our 

processor.  

○ Varying Operands multiple OPs: data with multiple varying operands 

● Data Interface: Create an interface between processor chip EM radiation measurements 

from Matlab and trained ML model for live instruction recognition. 

 

Software: 

We need to perform machine-learning experimentation such that we understand what algorithms 

work best for our data. Including techniques that include some form of recall to understand signals 

mutating and persisting as they travel through pipeline stages.  

Tasks: 

● Classification model for OPs: We will need a working classification model for opcode 

prediction when data only includes a single instruction at a time in our processor pipeline. 

○ Classification OPs framework subtask: create file that structures classification 

model, can input data for training and output predictions, but not ready to train 

effectively yet 

○ Classification OPs improvement subtask: polish file such that utilizes the more 

effective processing and training algorithms 

● Data export automation: Then we want to use advanced data processing techniques and 

automate data exportation with multiple instructions in the pipeline. 

○ Trained model export subtask: be able to save trained model and load in separate 

runtime environment to calculate performance analysis 
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2.2 RISKS AND RISK MANAGEMENT/MITIGATION 

For each of the tasks in our project each one comes with an associated risk.  Things may not go as 

well as planned or tools may fail to function.  Listed below are some of the risk and risk factors of 

each of the tasks. 

Mounting Hardware: Risk factor 0.2 

Risks include not being able to properly mount hardware in order to get a precise and consistent 

readout. 

Single Ops Data: Risk factor 0.35 

Risks include not being able to detect an operand vs noise and interference. 

Varying Operands Single Ops: Risk factor 0.4 

Risks include not being able to properly differentiate between operations detected by the EM 

antena. 

Multiple Ops Data: Risk factor 0.4 

Risks include not being able to properly differentiate between operations that are executed one 

right after another. 

Signal Capturing: Risk factor 0.55 

Instruments may not be sensitive enough to detect 90% of the opcode and operands.  Because of 

the high risk factor multiple EM antena need to be available for purchase. 

Data Conversion: Risk factor 0.2 

Risks include conflicts with interfacing sensor output to python.   

Filtering Through Machine Learning: Risk factor 0.5 

Inability of chosen machine learning technique to properly filter between valid and invalid data. 

This risk can be mitigated by having an understanding of multiple ML techniques and algorithms. 

ML Experimentation: Risk factor 0.1 

Risks include the ML algorithm and programming being too difficult to understand and use. 

Classification of Ops: Risk factor 0.6 

The desired Op classification holds the highest risk because it relies on all other tasks and their 

associated risk factors.  This risk can be mitigated by reducing risk for all other tasks. 

Data Export Automation: Risk factor 0.2 

Risks include not being able to easily and quickly export data from our EM probe and or the 

Trained Model. 
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2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

Observation of Operand and opcode with EM radiation probe with stable and consistent output. 

● Successful separation of waveforms for multiple operations in pipeline 

Interface between EM radiation probe and software. 

● Completely modified arduino and matlab code for Nucleo board compatibility  

Collection and identification of many instances of multiple opcodes being executed on the 

processor.  

● Waveforms exported into basic format (Excel) with opcode instruction along with 

accompanying  EM characteristics 

Interface between processor chip EM radiation measurements and trained ML model 

● Collected data converted into format for ML 

● Process of data collection -> ML format can be completed automatically 

Working classification model for opcode prediction 

● 90%+ accuracy in opcode detection 

Working classification model for opcode AND operand prediction 

● 90%+ accuracy in opcode detection 

● 80%+ accuracy in operand detection 
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2.4 PROJECT TIMELINE/SCHEDULE*/*-*- 

 

 

2.5 PROJECT TRACKING PROCEDURES 

To track progress the team will be using GitLab’s issue tracking feature. This feature creates a 

kanban-like board that allows for the assignment of tasks and progress tracking for groups and 

individuals. Additionally, the team has also chosen to use Slack for IM communications and WebEx 

teams for voice/video communications. 

 

2.6 PERSONNEL EFFORT REQUIREMENTS 

 

Task Total-Person Hours Explanation 

Data Collection Interface 50 Creation of EM capture and 
waveform separation method.. 
Includes validation of signal 
data after using technique. 

Automation Code 10 Automation of data collection 
technique created, testing of 
correct functionality. 

Mount 5 3D Modelling and Print Time 
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Single Ops Data 30 Identification of Ops 

Varying Operands Single Ops 10 Runthrough and 
identification of all relevant 
Ops 

Multiple Ops Data 40 Identification of operations in 
a pipeline, differentiation 
between consecutive Ops  

Varying Operands Multiple Ops 10 Generate data with 
randomized instruction 
operands for data variance 

EM to ML Interface 40 Set up automation code to 
connect processed probe 
readings to trained model for 
live classification 

ML Experimentation 80 Study advanced ML 
techniques and practice 
applications on other datasets 

Classification Model for Ops 30 Train Models to classify Ops  

Classification Ops Framework 30 Design code framework that 
sets up basic interface to ML 
packages 

Classification Ops Improvement 30 Work on implementing 
advanced techniques to 
improve prediction 

Data Export Automation 30 Automate data processing on 
instructions with multiple 
instructions and varied 
operands 

Trained Model Export 5 ML Package save to file and 
performance statistical 
analysis 

Total 400 
42; answer to life, the universe and everything 

 

 

2.7 OTHER RESOURCE REQUIREMENTS 

● STM32H7 Nucleo-144 (MB1364) board 

● Power supply, capable of powering above-mentioned microcontroller 

● TBPS01 Electromagnetic Probe Clone 
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● Digital Oscilloscope/Digitizer with a bandwidth of at least 200MHz 

2.8  FINANCIAL REQUIREMENTS 

● $27 - NUCLEO-H743ZI2 Development Board 

● $16 - Semi Rigid Coax Cable (EM Antena part) 

● $5 - SMA female to BNC female adapter (EM Antena part) 

● $8 - BNC Male to BNC Male Cable (EM Antena part) 

● $3 - 2x 4.29mm Cable Ferrites (EM Antena part) 

● Up to $70 to purchase another microcontroller 

● $129 Total 

 

 

 

3  Design 

3.1 PREVIOUS WORK AND LITERATURE 

Several previous works have investigated electromagnetic side channel information leakage. Works 

such as Electromagnetic Emission Measurement of Microprocessor Units (Maćkowski) have 

investigated what signals can be measured from the power supply lines. This is slightly different 

from our project, where we are directly measuring the microprocessor for signals. More closely 

related to our project is the work Electromagnetic Side Channel Information Leakage Created by 

Execution of Series of Instructions in a Computer Processor (Yilmaz). However we make the 

distinction that in that work, while signals were being collected, there was no effort to recreate the 

actions of the processor. This is where our project expands on previous work; we are measuring the 

electromagnetic radiation from a microprocessor and attempting to recreate the executed assembly 

by using machine learning. 

The task of identifying opcodes and operands as they move through a processor is no easy task. 

Since our chosen processor has a six-stage pipeline, this means that the EM signals can be a 

combination of six opcodes/operands. Including the temporal locality of the opcodes in our model 

will be essential in getting good results. The work Convolutional neural network-based hidden 

Markov models for rolling element bearing fault identification (Wang) is a fairly close example of 

what we must do, although the input data will be more complex and mixed up. 

 

3.2 DESIGN THINKING 

Define - reframe the project in terms of data collection for ML application and a ML classification 

problem. This splits us nicely into hardware and software projects too. 
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Ideate (design choices) - design our own probe chosen for cost effectiveness, use time series 

classification in Tensorflow chosen for its good documentation, chose to use matlab to drive 

triggers in data collection chosen because it was the example given to us  

 

3.3 PROPOSED DESIGN 

We have proposed to collect data from an STM32H743 nucleo-144 board to observe during 
operation. The board runs at 480 MHz but can be downclocked below 20 MHz. The flexible clock 
rate of our board allows us to fit within the 100 MHz constraint set by our current project 
specifications. Additionally, we are using an EM probe built by the team. The oscilloscope we plan 
on using is an Agilent DSOX2024A which has an operating bandwidth of 200 MHz. The chosen 
oscilloscope and probe will allow us to observe the electromagnetic radiation without aliasing the 
signals. The combination of hardware being used will let us observe an ARM M4/M7 class 
processor at a frequency of at most 100 MHz and collect the observed data for future use in 
machine learning. 

As for software, we plan on using Google’s machine learning framework, Tensorflow, to design a 
neural network capable of identifying both the OPCode and Operand being executed by our 
processor. The design of the neural network will change as we refine it to achieve greater accuracy, 
but Tensorflow will allow us to validate, profile, and benchmark our neural network. 

 

3.4 TECHNOLOGY CONSIDERATIONS 

● Oscilloscope 

○ There are many oscilloscopes to choose from, but we will have to work with what 

is in the lab that is available to us. 

● EMC Probe 

○ Purchasing an EMC probe will cost a couple hundred dollars to purchase. While 

much higher quality, the price makes this unrealistic. 

○ Creating an EMC probe out of semi-rigid coax cable allows for a cheaper 

alternative, but is not quality controlled and provides no method for calibration. 

● Development Board Selection 

○ There are a variety of different development boards, but since we are not taking 

advantage of the different features that they have, any microcontroller such as the 

Nucleo STM743HZI2 that allows us to configure the clock frequency will work. 

● IDE Selection 

○ STMCubeIDE is the free IDE that is used to program the Nucleo boards. It is a C or 

C++ environment that requires creating functions on the simplest level. While it 

gives us direct access to the board and all set up functions, it is very in depth and 

requires significant embedded systems knowledge which isn’t the goal of this 

project. 

○ The Arduino IDE is another choice that has an open source library which allows it 

to control ARM based microcontrollers rather than AVR based ones with a variety 

of prewritten  
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3.5 DESIGN ANALYSIS  

We ended up purchasing the Nucleo board for our testing, and controlled it using the Arduino IDE 

with the homemade EMC probe. The homemade EMC probe was able to capture data from the 

processor, however the magnitude of the probe was extremely low, and may require an amplifier in 

the future to capture more accurate data. Other things that were noticed were that other parts of 

the board were extremely noisy and created undesirable data that could ultimately affect the 

machine learning. The machine-learning should be able to pick out this data, but it may be 

important to measure from many different locations along the board to ensure that the various 

noise sources are considered when the machine learning runs. 

 

3.6 DEVELOPMENT PROCESS 

Our project’s development process is a combination of Waterfall and Agile.  The hardware side of 
our project mainly uses the Waterfall model as tasks need to be sequentially completed in order to 
work on the next task in line.  On the software side of development we use Agile. Agile gives us a 
flexible and responsive approach to the task at hand as the tasks do not need to be sequentially 
completed and their importance varies as certain tasks are progressed.  Using the Waterfall model 
to ensure continuous hardware progression and the Agile model to flexibly and reactively respond 
to problems keeps productivity and progression at a maximum. 

 

3.7 DESIGN PLAN 
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(1) How did your use cases from Sec 1.5 affect and shape your design plan? 

Our use case laid the groundwork for the shape and direction of our design plan. 

(2) How are your requirements being handled in the design plan (as well as use cases interpreted 

within the requirements driven design constraints)? 

Because of our design requirements we have chosen to use complex software such as ML in order to 

achieve the necessary accuracy to meet design requirements. 

(3) modules in your design are blocks of functionality of some granularity and abstraction– they 

compose with each other through interfaces How are these modules tied to requirements and use 

cases? 

Our requirement and use cases come from the software module connected to the testing block 

since that is where we define the accuracy benchmarks. 
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4  Testing  

4.1 UNIT TESTING 

Software: test a handful of different configurations and classification models 

Hardware: test for nop collection, then other opcodes 

Acceptance testing for requirements: can we classification with enough accuracy 

Unit testing: we will test our automated data collection schemes that make sure communication 
between matlab, arm board, and oscilloscope are working and data is collected correctly 

 

4.2 INTERFACE TESTING 

The interface between the nucleo board and the oscilloscope must be tested to ensure that all 
needed data can be acquired from it. Additionally, we must be able to have the oscilloscope send 
the data to a Matlab program able to save the EM signals as CSV files. 

When gathering the training data for the machine learning model, it is fine that the oscilloscope is 
separated from the code doing the machine learning. After all, we need to use ISU’s GPU cluster to 
train the model. Once training is completed, though, a goal would be to  have the model predict 
opcodes and operands in real time. This would require the oscilloscope to be able to record EM 
signals, send them to the computer running the machine learning model, and have the model make 
predictions. The interface between these two systems will be a point of testing once we have the 
model trained. If this turns out to be infeasible, then the next best thing would be to run the 
assembly program, collect the EM signals from the program, and feed that to the model, resulting 
in a number of  predictions. 

Relevant interfaces include: Nucleo board, oscilloscope, Matlab, Tensorflow (python) 

 

4.3 ACCEPTANCE TESTING 

 

The client will be involved in live testing of the design in action.  Design requirements are 90% 
accuracy for opcode and 80% for operand so we will just use 70/30 split for training and 
verification. Demonstrating to the client that operations on the ARM processor match those 
observed and processed by our design. 

4.4 RESULTS 

We are not far enough in the project to post any results from final design testing. We have been 

able to collect data from the microprocessor, view it in the oscilloscope, and save it in Matlab. 

Below is an example plot of oscilloscope data. The next steps are to collect data for several opcodes 

and begin to design a machine learning framework.  
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Figure X. Example oscilloscope data of EM radiation caused by NOP opcodes 

5  Implementation 

Describe any (preliminary) implementation plan for the next semester for your proposed design in 

3.3. 

 

 

 

6  Closing Material 

6.1 CONCLUSION 

Summarize the work you have done so far.  Briefly reiterate your goals. Then, reiterate the best plan 

of action (or solution) to achieving your goals and indicate why this surpasses all other possible 

solutions tested. 

 

6.2 REFERENCES 

List technical references and related work / market survey references. Do professional citation style 
(ex. IEEE). 



18 

B. B. Yilmaz, M. Prvulovic and A. Zajić, "Electromagnetic Side Channel Information Leakage 

Created by Execution of Series of Instructions in a Computer Processor," in IEEE Transactions on 

Information Forensics and Security, vol. 15, pp. 776-789, 2020, doi: 10.1109/TIFS.2019.2929018. 

Andrzej Kwiecień, Michał Maćkowski and Krzysztof Skoroniak Series: Communications in 

Computer and Information Science, Year: 2012, Volume 291, Page 191 

Maćkowski, Michał & Skoroniak, Krzysztof. (2009). Electromagnetic Emission Measurement of 

Microprocessor Units. 39. 103-110. 10.1007/978-3-642-02671-3_12. 

Shuhui Wang, Jiawei Xiang, Yongteng Zhong, Yuqing Zhou, Convolutional neural network-based 

hidden Markov models for rolling element bearing fault identification, Knowledge-Based Systems, 

Volume 144, 2018, Pages 65-76, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2017.12.027. 

 

6.3 APPENDICES 

 

Any additional information that would be helpful to the evaluation of your design document. 

If you have any large graphs, tables, or similar data that does not directly pertain to the problem 

but helps support it, include it here. This would also be a good area to include hardware/software 

manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc., 

Software bugs etc. 


