

Team Number: 09

Client: Prof. Akhilesh Tyagi
Advisers: Varghese Vaidyan

Team Members:
Matthew Campbell
Noah Berthusen

Cristian George

Jesse Knight
Jacob Vaughn

Evan McKinney

sdmay21-09@iastate.edu

https://sdmay21-09.sd.ecec.iastate.edu

Revised: 10/02/2020

Instruction Level Reverse
Engineering (Disassembly)
through EM Side Channel

DESIGN DOCUMENT

2

Development Standards & Practices Used

● Agile Scrum model used

● IEEE UART protocols

● Python PEP 8 Style

● Arduino Style Guidelines

● IEEE Code of Ethics

Summary of Requirements

● Program collects EM data and converts it to a usable format
● Model will predict opcodes with 90%+ accuracy and operands with 80%+

accuracy.
● Written in Python
● Well-documented code
● Predictions are formatted in a user-friendly format
● Large amount of data used to train the model

Applicable Courses from Iowa State University Curriculum

● COM S 311 (Introduction to the Design and Analysis of Algorithms)

● COM S 474 (Introduction to Machine Learning)

● CPRE 288 (Embedded System I)

● CPRE 381 (Computer Organization and Assembly Level Programming)

● CPRE 482x (HW Design for Machine Learning)

● EE 224 (Signals and Systems I)

● EE 321 (Communication Systems I)

● EE 201 (Electrical Circuits)

● EE 230 (Electronic Circuits and Systems)

New Skills/Knowledge acquired that was not taught in courses

● Convolutional neural networks (CNNs), Markov chains

● Side-channel observation of processors

Executive Summary

3

Table of Contents

1 Introduction 5

1.1 55

1.2 55

1.3 55

1.4 55

1.5 66

1.6 66

1.7 66

2 77

2.1 Task Decomposition 7

2.2 Risks And Risk Management/Mitigation 8

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 8

2.4 Project Timeline/Schedule 9

2.5 Project Tracking Procedures 9

2.6 Personnel Effort Requirements 9

2.7 Other Resource Requirements 11

2.8 Financial Requirements 11

3 Design 11

3.1 Previous Work And Literature 11

3.2 Proposed Design 11

3.3 Technology Considerations 8

3.4 Design Analysis 8

3.5 Development Process 8

3.6 14

4 Testing 9

4.1 Unit Testing 9

4.2 Interface Testing 9

4.3 Acceptance Testing 9

4.4 Results 9

5 Implementation 10

6 Closing Material 10

4

6.1 Conclusion 10

6.2 References 10

6.3 Appendices 18

5

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to thank Vhargese Vaidyan for sharing his knowledge about working with the EM
side channel for reverse engineering, and for sharing his equipment and experience with us in order
to jump start the project. Additionally, we’d like to thank ETG for letting us check out an
oscilloscope for the entire Fall semester allowing us to begin long-term data capture.

1.2 PROBLEM AND PROJECT STATEMENT

General problem statement:

 We want to be able to determine the assembly level code that is currently running on a

processor by only reading the electromagnetic radiation that comes off of the processor. This kind

of research has cyber security implications in that you could bypass a lot of security if you could

find out what code is running just by measuring the physical electromagnetic (EM) radiation that

the processor gives off.

General solution statement:

 Our solution is to capture data using an electromagnetic probe and send that data to a

machine learning algorithm. The machine learning algorithm will be able to look at the data and

the surrounding data points to determine with a degree of certainty what opcode and operand is

being ex

1.3 OPERATIONAL ENVIRONMENT

The resulting end product from this project will be used in a laboratory environment with minimal
electromagnetic interference. At the moment, the operational environment will be in 301 Durham.
301 Durham has an oscilloscope and EM antenna powerful enough to capture the radiation emitted
by our microcontroller.

1.4 REQUIREMENTS

Requirements:

- Program collects EM data and converts it to a usable format

- Model will predict opcodes with 90%+ accuracy and operands with 80%+ accuracy.

Non-functional requirements:

- Written in Python

- Well-documented code

- Predictions are formatted in a user-friendly format

- Large amount of data used to train the model

6

1.5 INTENDED USERS AND USES

Our single intended use is to measure EM radiation from a Cortex Arm M4 processor and output
the corresponding opcodes and operands. The intended user for our project is our client Akhilesh
Tyagi and other EM side-channel researchers.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

- End users will have access to the necessary hardware and software

- Design is running on a Cortex Arm M4 processor with a 4 stage pipeline running at 200

MHz

- EM is measured using same tools used to train the machine learning model

Limitations:

- Program will need to run on a high-end GPU

- Input data to model must be in a specific format

- Processor must have at least a 4 stage pipeline

1.7 EXPECTED END PRODUCT AND DELIVERABLES
1. A machine learning algorithm capable of 90% opcode, and 80% operand detection:

The machine learning algorithm will be delivered at the end of the project, approximately

May 2021. The algorithm will be created using python and will include the datasets used to

test, train, and validate the algorithm. Additionally, the algorithm will include

documentation describing how to redeploy the algorithm to a separate system.

2. Automated data extraction tool to pull data from EMR probe.

The extraction tool will take data from either the oscilloscope or digitizer and convert it

into a format usable by the machine learning algorithm. This tool will allow the client to

easily extract additional data to run against the trained algorithm. We expect to have this

data extraction tool to be completed by November 2020, but will be delivered to the client

with the machine learning algorithm in May 2021.

7

2 Project Plan

2.1 TASK DECOMPOSITION

Hardware:

We will need to set up some interface to probe the EM radiation from the processor which will

need to be precise and consistent in order to get as clean data as possible. Also we should set up

some way to control, monitor and save the processor’s executing instructions.

Task:

● Data collection interface: Modify existing arduino code and matlab file to be compatible

with Nucleo board ISA, for automating data collection

● Mount: Design a structure for the probe and processing board to be mounted on for

consistent measuring.

● Single OPs data: Collect many instances of single opcodes being executed on our

processor.

○ Varying Operands Single OPs: data with varying operands

● Multiple Ops data: Collect many instances of multiple opcodes being executed on our

processor.

○ Varying Operands multiple OPs: data with multiple varying operands

● Data Interface: Create an interface between processor chip EM radiation measurements

from Matlab and trained ML model for live instruction recognition.

Software:

We need to perform machine-learning experimentation such that we understand what algorithms

work best for our data. Including techniques that include some form of recall to understand signals

mutating and persisting as they travel through pipeline stages.

Tasks:

● Classification model for OPs: We will need a working classification model for opcode

prediction when data only includes a single instruction at a time in our processor pipeline.

○ Classification OPs framework subtask: create file that structures classification

model, can input data for training and output predictions, but not ready to train

effectively yet

○ Classification OPs improvement subtask: polish file such that utilizes the more

effective processing and training algorithms

● Data export automation: Then we want to use advanced data processing techniques and

automate data exportation with multiple instructions in the pipeline.

○ Trained model export subtask: be able to save trained model and load in separate

runtime environment to calculate performance analysis

8

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

For each of the tasks in our project each one comes with an associated risk. Things may not go as

well as planned or tools may fail to function. Listed below are some of the risk and risk factors of

each of the tasks.

Mounting Hardware: Risk factor 0.2

Risks include not being able to properly mount hardware in order to get a precise and consistent

readout.

Single Ops Data: Risk factor 0.35

Risks include not being able to detect an operand vs noise and interference.

Varying Operands Single Ops: Risk factor 0.4

Risks include not being able to properly differentiate between operations detected by the EM

antena.

Multiple Ops Data: Risk factor 0.4

Risks include not being able to properly differentiate between operations that are executed one

right after another.

Signal Capturing: Risk factor 0.55

Instruments may not be sensitive enough to detect 90% of the opcode and operands. Because of

the high risk factor multiple EM antena need to be available for purchase.

Data Conversion: Risk factor 0.2

Risks include conflicts with interfacing sensor output to python.

Filtering Through Machine Learning: Risk factor 0.5

Inability of chosen machine learning technique to properly filter between valid and invalid data.

This risk can be mitigated by having an understanding of multiple ML techniques and algorithms.

ML Experimentation: Risk factor 0.1

Risks include the ML algorithm and programming being too difficult to understand and use.

Classification of Ops: Risk factor 0.6

The desired Op classification holds the highest risk because it relies on all other tasks and their

associated risk factors. This risk can be mitigated by reducing risk for all other tasks.

Data Export Automation: Risk factor 0.2

Risks include not being able to easily and quickly export data from our EM probe and or the

Trained Model.

9

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Observation of Operand and opcode with EM radiation probe with stable and consistent output.

● Successful separation of waveforms for multiple operations in pipeline

Interface between EM radiation probe and software.

● Completely modified arduino and matlab code for Nucleo board compatibility

Collection and identification of many instances of multiple opcodes being executed on the

processor.

● Waveforms exported into basic format (Excel) with opcode instruction along with

accompanying EM characteristics

Interface between processor chip EM radiation measurements and trained ML model

● Collected data converted into format for ML

● Process of data collection -> ML format can be completed automatically

Working classification model for opcode prediction

● 90%+ accuracy in opcode detection

Working classification model for opcode AND operand prediction

● 90%+ accuracy in opcode detection

● 80%+ accuracy in operand detection

10

2.4 PROJECT TIMELINE/SCHEDULE*/*-*-

2.5 PROJECT TRACKING PROCEDURES

To track progress the team will be using GitLab’s issue tracking feature. This feature creates a

kanban-like board that allows for the assignment of tasks and progress tracking for groups and

individuals. Additionally, the team has also chosen to use Slack for IM communications and WebEx

teams for voice/video communications.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Total-Person Hours Explanation

Data Collection Interface 50 Creation of EM capture and
waveform separation method..
Includes validation of signal
data after using technique.

Automation Code 10 Automation of data collection
technique created, testing of
correct functionality.

Mount 5 3D Modelling and Print Time

11

Single Ops Data 30 Identification of Ops

Varying Operands Single Ops 10 Runthrough and
identification of all relevant
Ops

Multiple Ops Data 40 Identification of operations in
a pipeline, differentiation
between consecutive Ops

Varying Operands Multiple Ops 10 Generate data with
randomized instruction
operands for data variance

EM to ML Interface 40 Set up automation code to
connect processed probe
readings to trained model for
live classification

ML Experimentation 80 Study advanced ML
techniques and practice
applications on other datasets

Classification Model for Ops 30 Train Models to classify Ops

Classification Ops Framework 30 Design code framework that
sets up basic interface to ML
packages

Classification Ops Improvement 30 Work on implementing
advanced techniques to
improve prediction

Data Export Automation 30 Automate data processing on
instructions with multiple
instructions and varied
operands

Trained Model Export 5 ML Package save to file and
performance statistical
analysis

Total 400
42; answer to life, the universe and everything

2.7 OTHER RESOURCE REQUIREMENTS

● STM32H7 Nucleo-144 (MB1364) board

● Power supply, capable of powering above-mentioned microcontroller

● TBPS01 Electromagnetic Probe Clone

12

● Digital Oscilloscope/Digitizer with a bandwidth of at least 200MHz

2.8 FINANCIAL REQUIREMENTS

● $27 - NUCLEO-H743ZI2 Development Board

● $16 - Semi Rigid Coax Cable (EM Antena part)

● $5 - SMA female to BNC female adapter (EM Antena part)

● $8 - BNC Male to BNC Male Cable (EM Antena part)

● $3 - 2x 4.29mm Cable Ferrites (EM Antena part)

● Up to $70 to purchase another microcontroller

● $129 Total

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Several previous works have investigated electromagnetic side channel information leakage. Works

such as Electromagnetic Emission Measurement of Microprocessor Units (Maćkowski) have

investigated what signals can be measured from the power supply lines. This is slightly different

from our project, where we are directly measuring the microprocessor for signals. More closely

related to our project is the work Electromagnetic Side Channel Information Leakage Created by

Execution of Series of Instructions in a Computer Processor (Yilmaz). However we make the

distinction that in that work, while signals were being collected, there was no effort to recreate the

actions of the processor. This is where our project expands on previous work; we are measuring the

electromagnetic radiation from a microprocessor and attempting to recreate the executed assembly

by using machine learning.

The task of identifying opcodes and operands as they move through a processor is no easy task.

Since our chosen processor has a six-stage pipeline, this means that the EM signals can be a

combination of six opcodes/operands. Including the temporal locality of the opcodes in our model

will be essential in getting good results. The work Convolutional neural network-based hidden

Markov models for rolling element bearing fault identification (Wang) is a fairly close example of

what we must do, although the input data will be more complex and mixed up.

3.2 DESIGN THINKING

Define - reframe the project in terms of data collection for ML application and a ML classification

problem. This splits us nicely into hardware and software projects too.

13

Ideate (design choices) - design our own probe chosen for cost effectiveness, use time series

classification in Tensorflow chosen for its good documentation, chose to use matlab to drive

triggers in data collection chosen because it was the example given to us

3.3 PROPOSED DESIGN

We have proposed to collect data from an STM32H743 nucleo-144 board to observe during
operation. The board runs at 480 MHz but can be downclocked below 20 MHz. The flexible clock
rate of our board allows us to fit within the 100 MHz constraint set by our current project
specifications. Additionally, we are using an EM probe built by the team. The oscilloscope we plan
on using is an Agilent DSOX2024A which has an operating bandwidth of 200 MHz. The chosen
oscilloscope and probe will allow us to observe the electromagnetic radiation without aliasing the
signals. The combination of hardware being used will let us observe an ARM M4/M7 class
processor at a frequency of at most 100 MHz and collect the observed data for future use in
machine learning.

As for software, we plan on using Google’s machine learning framework, Tensorflow, to design a
neural network capable of identifying both the OPCode and Operand being executed by our
processor. The design of the neural network will change as we refine it to achieve greater accuracy,
but Tensorflow will allow us to validate, profile, and benchmark our neural network.

3.4 TECHNOLOGY CONSIDERATIONS

● Oscilloscope

○ There are many oscilloscopes to choose from, but we will have to work with what

is in the lab that is available to us.

● EMC Probe

○ Purchasing an EMC probe will cost a couple hundred dollars to purchase. While

much higher quality, the price makes this unrealistic.

○ Creating an EMC probe out of semi-rigid coax cable allows for a cheaper

alternative, but is not quality controlled and provides no method for calibration.

● Development Board Selection

○ There are a variety of different development boards, but since we are not taking

advantage of the different features that they have, any microcontroller such as the

Nucleo STM743HZI2 that allows us to configure the clock frequency will work.

● IDE Selection

○ STMCubeIDE is the free IDE that is used to program the Nucleo boards. It is a C or

C++ environment that requires creating functions on the simplest level. While it

gives us direct access to the board and all set up functions, it is very in depth and

requires significant embedded systems knowledge which isn’t the goal of this

project.

○ The Arduino IDE is another choice that has an open source library which allows it

to control ARM based microcontrollers rather than AVR based ones with a variety

of prewritten

14

3.5 DESIGN ANALYSIS

We ended up purchasing the Nucleo board for our testing, and controlled it using the Arduino IDE

with the homemade EMC probe. The homemade EMC probe was able to capture data from the

processor, however the magnitude of the probe was extremely low, and may require an amplifier in

the future to capture more accurate data. Other things that were noticed were that other parts of

the board were extremely noisy and created undesirable data that could ultimately affect the

machine learning. The machine-learning should be able to pick out this data, but it may be

important to measure from many different locations along the board to ensure that the various

noise sources are considered when the machine learning runs.

3.6 DEVELOPMENT PROCESS

Our project’s development process is a combination of Waterfall and Agile. The hardware side of
our project mainly uses the Waterfall model as tasks need to be sequentially completed in order to
work on the next task in line. On the software side of development we use Agile. Agile gives us a
flexible and responsive approach to the task at hand as the tasks do not need to be sequentially
completed and their importance varies as certain tasks are progressed. Using the Waterfall model
to ensure continuous hardware progression and the Agile model to flexibly and reactively respond
to problems keeps productivity and progression at a maximum.

3.7 DESIGN PLAN

15

(1) How did your use cases from Sec 1.5 affect and shape your design plan?

Our use case laid the groundwork for the shape and direction of our design plan.

(2) How are your requirements being handled in the design plan (as well as use cases interpreted

within the requirements driven design constraints)?

Because of our design requirements we have chosen to use complex software such as ML in order to

achieve the necessary accuracy to meet design requirements.

(3) modules in your design are blocks of functionality of some granularity and abstraction– they

compose with each other through interfaces How are these modules tied to requirements and use

cases?

Our requirement and use cases come from the software module connected to the testing block

since that is where we define the accuracy benchmarks.

16

4 Testing

4.1 UNIT TESTING

Software: test a handful of different configurations and classification models

Hardware: test for nop collection, then other opcodes

Acceptance testing for requirements: can we classification with enough accuracy

Unit testing: we will test our automated data collection schemes that make sure communication
between matlab, arm board, and oscilloscope are working and data is collected correctly

4.2 INTERFACE TESTING

The interface between the nucleo board and the oscilloscope must be tested to ensure that all
needed data can be acquired from it. Additionally, we must be able to have the oscilloscope send
the data to a Matlab program able to save the EM signals as CSV files.

When gathering the training data for the machine learning model, it is fine that the oscilloscope is
separated from the code doing the machine learning. After all, we need to use ISU’s GPU cluster to
train the model. Once training is completed, though, a goal would be to have the model predict
opcodes and operands in real time. This would require the oscilloscope to be able to record EM
signals, send them to the computer running the machine learning model, and have the model make
predictions. The interface between these two systems will be a point of testing once we have the
model trained. If this turns out to be infeasible, then the next best thing would be to run the
assembly program, collect the EM signals from the program, and feed that to the model, resulting
in a number of predictions.

Relevant interfaces include: Nucleo board, oscilloscope, Matlab, Tensorflow (python)

4.3 ACCEPTANCE TESTING

The client will be involved in live testing of the design in action. Design requirements are 90%
accuracy for opcode and 80% for operand so we will just use 70/30 split for training and
verification. Demonstrating to the client that operations on the ARM processor match those
observed and processed by our design.

4.4 RESULTS

We are not far enough in the project to post any results from final design testing. We have been

able to collect data from the microprocessor, view it in the oscilloscope, and save it in Matlab.

Below is an example plot of oscilloscope data. The next steps are to collect data for several opcodes

and begin to design a machine learning framework.

17

Figure X. Example oscilloscope data of EM radiation caused by NOP opcodes

5 Implementation

Describe any (preliminary) implementation plan for the next semester for your proposed design in

3.3.

6 Closing Material

6.1 CONCLUSION

Summarize the work you have done so far. Briefly reiterate your goals. Then, reiterate the best plan

of action (or solution) to achieving your goals and indicate why this surpasses all other possible

solutions tested.

6.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

18

B. B. Yilmaz, M. Prvulovic and A. Zajić, "Electromagnetic Side Channel Information Leakage

Created by Execution of Series of Instructions in a Computer Processor," in IEEE Transactions on

Information Forensics and Security, vol. 15, pp. 776-789, 2020, doi: 10.1109/TIFS.2019.2929018.

Andrzej Kwiecień, Michał Maćkowski and Krzysztof Skoroniak Series: Communications in

Computer and Information Science, Year: 2012, Volume 291, Page 191

Maćkowski, Michał & Skoroniak, Krzysztof. (2009). Electromagnetic Emission Measurement of

Microprocessor Units. 39. 103-110. 10.1007/978-3-642-02671-3_12.

Shuhui Wang, Jiawei Xiang, Yongteng Zhong, Yuqing Zhou, Convolutional neural network-based

hidden Markov models for rolling element bearing fault identification, Knowledge-Based Systems,

Volume 144, 2018, Pages 65-76, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2017.12.027.

6.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem

but helps support it, include it here. This would also be a good area to include hardware/software

manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,

Software bugs etc.

