

Development Standards & Practices Used

● Agile Scrum model used

● IEEE UART protocols

● Python PEP 8 Style

● Arduino Style Guidelines

● IEEE Code of Ethics

Summary of Requirements

● Program collects EM data and converts it to a usable format

● Model will predict opcodes with 90%+ accuracy and operands with 80%+

accuracy.

● Written in Python

● Well-documented code

● Predictions are formatted in a user-friendly format

● Large amount of data used to train the model

Applicable Courses from Iowa State University Curriculum

● COM S 311 (Introduction to the Design and Analysis of Algorithms)
● COM S 474 (Introduction to Machine Learning)

● CPRE 288 (Embedded System I)

● CPRE 381 (Computer Organization and Assembly Level Programming)

● CPRE 482x (HW Design for Machine Learning)

● EE 224 (Signals and Systems I)

● EE 321 (Communication Systems I)

● EE 201 (Electrical Circuits)

● EE 230 (Electronic Circuits and Systems)

New Skills/Knowledge acquired that was not taught in courses

● Convolutional neural networks (CNNs), Markov chains

● Side-channel observation of processors

Table of Contents
1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 4

1.5 Intended Users and Uses 4

1.6 Assumptions and Limitations 5

1.7 Expected End Product and Deliverables 5

2 Project Plan 5

2.1 Task Decomposition 5

2.2 Risks And Risk Management/Mitigation 6

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

2.4 Project Timeline/Schedule 6

2.5 Project Tracking Procedures 6

2.6 Personnel Effort Requirements 7

2.7 Other Resource Requirements 7

2.8 Financial Requirements 7

3 Design 7

3.1 Previous Work And Literature 7

3.2 Design Thinking 7

3.3 Proposed Design 7

3.4 Technology Considerations 8

3.5 Design Analysis 8

3.6 Development Process 8

3.7 Design Plan 8

4 Testing 9

4.1 Unit Testing 9

4.2 Interface Testing 9

4.3 Acceptance Testing 9

4.4 Results 9

5 Implementation 10

6 Closing Material 10

6.1 Conclusion 10

6.2 References 10

6.3 Appendices 10

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to thank Vhargese Vaidyan for sharing his knowledge about working with the EM
side channel for reverse engineering, and for sharing his equipment and experience with us in order
to jump start the project.

1.2 PROBLEM AND PROJECT STATEMENT

General problem statement:

We want to be able to determine the assembly level code that is currently running on a
processor by only reading the electromagnetic radiation that comes off of the processor. This kind
of research has cyber security implications in that you could bypass a lot of security if you could
find out what code is running just by measuring the physical electromagnetic (EM) radiation that
the processor gives off.

General solution statement:

Our solution is to capture data using an electromagnetic probe and send that data to a
machine learning algorithm. The machine learning algorithm will be able to look at the data and
the surrounding data points to determine with a degree of certainty what opcode and operand is
being ex

1.3 OPERATIONAL ENVIRONMENT

The resulting end product from this project will be used in a laboratory environment with minimal
electromagnetic interference. At the moment, the operational environment will be in 301 Durham.
301 Durham has an oscilloscope and EM antenna powerful enough to capture the radiation emitted
by our microcontroller.

1.4 REQUIREMENTS

Requirements:

- Program collects EM data and converts it to a usable format
- Model will predict opcodes with 90%+ accuracy and operands with 80%+ accuracy.

Non-functional requirements:

- Written in Python
- Well-documented code
- Predictions are formatted in a user-friendly format
- Large amount of data used to train the model

1.5 INTENDED USERS AND USES

Our single intended use is to measure EM radiation from a Cortex Arm M4 processor and output
the corresponding opcodes and operands. The intended user for our project is our client Akhilesh
Tyagi and other EM side-channel researchers.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

- End users will have access to the necessary hardware and software
- Design is running on a Cortex Arm M4 processor with a 4 stage pipeline running at 200

MHz
- EM is measured using same tools used to train the machine learning model

Limitations:

- Program will need to run on a high-end GPU
- Input data to model must be in a specific format
- Processor must have at least a 4 stage pipeline

1.7 EXPECTED END PRODUCT AND DELIVERABLES
1. A machine learning algorithm capable of 90% opcode, and 80% operand detection:

The machine learning algorithm will be delivered at the end of the project, approximately
May 2021. The algorithm will be created using python and will include the datasets used to
test, train, and validate the algorithm. Additionally, the algorithm will include
documentation describing how to redeploy the algorithm to a separate system.

2. Automated data extraction tool to pull data from EMR probe.

The extraction tool will take data from either the oscilloscope or digitizer and convert it
into a format usable by the machine learning algorithm. This tool will allow the client to
easily extract additional data to run against the trained algorithm. We expect to have this
data extraction tool to be completed by November 2020, but will be delivered to the client
with the machine learning algorithm in May 2021.

2 Project Plan

2.1 TASK DECOMPOSITION

Hardware:

We will need to set up some interface to probe the EM radiation from the processor which
will need to be precise and consistent in order to get as clean data as possible. Also we should set
up some way to control, monitor and save the processor’s executing instructions.

subtasks: modify existing arduino code and matlab file to be compatible with Nucleo board
ISA, for automating data collection

Design a structure for the probe and processing board to be mounted on for consistent
measuring.

Collect many instances of single opcodes being executed on our processor.

subtask: data with varying operands

Collect many instances of multiple opcodes being executed on our processor.

subtask: data with multiple varying operands

Create an interface between processor chip EM radiation measurements and trained ML
model for live instruction recognition.

Software:

We need to perform machine-learning experimentation such that we understand what
algorithms work best for our data. Including techniques that include some form of recall to
understand signals mutating and persisting as they travel through pipeline stages.

We will need a working classification model for opcode prediction when data only includes
a single instruction at a time in our processor pipeline.

subtask: create file that structures classification model, can input data for training and
output predictions, but not ready to train effectively yet

subtask: polish file such that utilizes the more effective processing and training algorithms

Then we want to use advanced data processing techniques and automate data exportation
with multiple instructions in the pipeline.

subtask: be able to save trained model and load in separate runtime environment to
calculate performance analysis

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

For each of the tasks in our project each one comes with an associated risk. Things may not go as
well as planned or tools may fail to function. Listed below are some of the risk and risk factors of
each of the tasks.

Signal Capturing: Risk factor 0.55
Instruments may not be sensitive enough to detect 90% of the opcode and operands. Because of
the high risk factor multiple EM antena need to be available for purchase.

Data Conversion: Risk factor 0.2
Risks include conflicts with interfacing sensor output to python.

Filtering Through Machine Learning: Risk factor 0.5
Inability of chosen machine learning technique to properly filter between valid and invalid data.
This risk can be mitigated by having an understanding of multiple ML techniques and algorithms.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Observation of Operand and opcode with EM radiation probe with stable and consistent output.

● Successful separation of waveforms for multiple operations in pipeline

Interface between EM radiation probe and software.

● Completely modified arduino and matlab code for Nucleo board compatibility

Collection and identification of many instances of multiple opcodes being executed on the
processor.

● Waveforms exported into basic format (Excel) with opcode instruction along with
accompanying EM characteristics

Interface between processor chip EM radiation measurements and trained ML model

● Collected data converted into format for ML
● Process of data collection -> ML format can be completed automatically

Working classification model for opcode prediction

● 90%+ accuracy in opcode detection

Working classification model for opcode AND operand prediction

● 90%+ accuracy in opcode detection

● 80%+ accuracy in operand detection

2.4 PROJECT TIMELINE/SCHEDULE

2.5 PROJECT TRACKING PROCEDURES

To track progress the team will be using GitLab’s issue tracking feature. This feature creates a
kanban-like board that allows for the assignment of tasks and progress tracking for groups and
individuals. Additionally, the team has also chosen to use Slack for IM communications and WebEx
teams for voice/video communications.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Total-Person Hours Explanation

Data Collection Interface 50 Creation of EM capture and
waveform separation
method.. Includes validation
of signal data after using
technique.

Automation Code 10 Automation of data collection
technique created, testing of
correct functionality.

Mount 5 3D Modelling and Print Time

Single Ops Data 30 Identification of Ops

Varying Operands Single Ops 10 Runthrough and
identification of all relevant
Ops

Multiple Ops Data 40 Identification of operations in
a pipeline, differentiation
between consecutive Ops

Varying Operands Multiple Ops 10 Generate data with
randomized instruction
operands for data variance

EM to ML Interface 40 Set up automation code to
connect processed probe
readings to trained model for
live classification

ML Experimentation 80 Study advanced ML
techniques and practice
applications on other datasets

Classification Model for Ops 30 Train Models to classify Ops

Classification Ops Framework 30 Design code framework that
sets up basic interface to ML
packages

Classification Ops Improvement 30 Work on implementing
advanced techniques to
improve prediction

Data Export Automation 30 Automate data processing on
instructions with multiple
instructions and varied
operands

Trained Model Export 5 ML Package save to file and
performance statistical
analysis

Total 400
42; answer to life, the universe and everything

2.7 OTHER RESOURCE REQUIREMENTS

● STM32H7 Nucleo-144 (MB1364) board
● Power supply, capable of powering above-mentioned microcontroller
● TBPS01 Electromagnetic Probe

● Digital Oscilloscope/Digitizer with a bandwidth of at least 400MHz

2.8 FINANCIAL REQUIREMENTS

● Up to $70 to purchase another microcontroller

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Include relevant background/literature review for the project

– If similar products exist in the market, describe what has already been done

– If you are following previous work, cite that and discuss the advantages/shortcomings

– Note that while you are not expected to “compete” with other existing products / research
groups, you should be able to differentiate your project from what is available

Detail any similar products or research done on this topic previously. Please cite your sources and
include them in your references. All figures must be captioned and referenced in your text.

3.2 DESIGN THINKING

Detail any design thinking driven design “define” aspects that shape your design. Enumerate some
of the other design choices that came up in your design thinking “ideate” phase.

3.3 PROPOSED DESIGN

Include any/all possible methods of approach to solving the problem:

– Discuss what you have done so far – what have you tried/implemented/tested?
– Some discussion of how this design satisfies the functional and non-functional

requirements of the project.
- If any standards are relevant to your project (e.g. IEEE standards, NIST standards) discuss

the applicability of those standards here
- This design description should be in sufficient detail that another team of engineers can

look through it and implement it.

3.4 TECHNOLOGY CONSIDERATIONS

Highlight the strengths, weakness, and trade-offs made in technology available.

Discuss possible solutions and design alternatives

3.5 DESIGN ANALYSIS

– Did your proposed design from 3.3 work? Why or why not?

– What are your observations, thoughts, and ideas to modify or iterate over the design?

3.6 DEVELOPMENT PROCESS

Discuss what development process you are following with a rationale for it – Waterfall, TDD, Agile.
Note that this is not necessarily only for software projects. Development processes are applicable
for all design projects.

3.7 DESIGN PLAN

Describe a design plan with respect to use-cases within the context of requirements, modules in
your design (dependency/concurrency of modules through a module diagram, interfaces,
architectural overview), module constraints tied to requirements.

4 Testing
Testing is an extremely important component of most projects, whether it involves a circuit, a
process, or software.

1. Define the needed types of tests (unit testing for modules, integrity testing for interfaces,
user-study or acceptance testing for functional and non-functional requirements).
2. Define/identify the individual items/units and interfaces to be tested.
3. Define, design, and develop the actual test cases.
4. Determine the anticipated test results for each test case

5. Perform the actual tests.
6. Evaluate the actual test results.
7. Make the necessary changes to the product being tested

8. Perform any necessary retesting
9. Document the entire testing process and its results

Include Functional and Non-Functional Testing, Modeling and Simulations, challenges you have
determined.

4.1 UNIT TESTING

– Discuss any hardware/software units being tested in isolation

4.2 INTERFACE TESTING

– Discuss how the composition of two or more units (interfaces) are to be tested. Enumerate all the
relevant interfaces in your design.

4.3 ACCEPTANCE TESTING
How will you demonstrate that the design requirements, both functional and non-functional are
being met? How would you involve your client in the acceptance testing?

4.4 RESULTS

– List and explain any and all results obtained so far during the testing phase

● Include failures and successes

● Explain what you learned and how you are planning to change the design iteratively as you
progress with your project

● If you are including figures, please include captions and cite it in the text

5 Implementation
Describe any (preliminary) implementation plan for the next semester for your proposed design in
3.3.

6 Closing Material

6.1 CONCLUSION

Summarize the work you have done so far. Briefly re-iterate your goals. Then, re-iterate the best
plan of action (or solution) to achieving your goals and indicate why this surpasses all other
possible solutions tested.

6.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

6.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem
but helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

